1、等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d。前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2。若m+n=p+q则:存在am+an=ap+aq。若m+n=2p则:am+an=2ap。以上n均为正整数。
1、(1) 等比数列:a (n+1)/an=q (n∈N)。
2、前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。
3、等差数列的通项公式为:an=a1+(n-1)d或an=am+(n-m)d。前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2。若m+n=p+q则:存在am+an=ap+aq。若m+n=2p则:am+an=2ap。以上n均为正整数。
4、求和公式是S=(1+n)*n/2,求S实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。
5、等差数列求和公式:(字母描述)其中等差数列的首项为a1,末项为an,项数为n,公差为d,前n项和为Sn。等差数列的通项公式:其中等差数列的首项为a1,末项为an,项数为n,公差为d,前n项和为Sn。
数列求和公式是(首项+末项)×项数/2。数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。
数列求和公式有七个方法:公式法、列项相消法、错位相减法、分解法、分组法、倒序相加法、乘公比错项相减等。具体介绍如下:公式法。公式法是解一元二次方程的一种方法,也指套用公式计算某事物。
∑(n=1,∞) 1/n^2 = π^2/6 。数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。
有等差数列和等比数列,其中有等差数列公式和求和公式,等比数列求和公式。若通项公式变形为(n∈N*),当q0时,则可把看作自变量n的函数,点(n)是曲线上的一群孤立的点。
+(2n-1)-2n 方法一:(并项)求出奇数项和偶数项的和,再相减。方法二:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]方法三:构造新的数列,可借用等差数列与等比数列的复合。