1、正值性质 当α0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0)。b、函数的图像在区间[0,+∞)上是增函数。
幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
图像如图所示:y=x的-2次方也就是y=1/x的2次方。这是一个幂函数。幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
幂函数y=x的-4次方的图像如下图:相关介绍 数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西的布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的。
幂函数的图像 Y = X^a 取决于指数 a 的值,可以分为以下几种情况进行讨论: 当 a 0 时:- 当 X 0 时,随着 X 的增大,Y = X^a 也会增大。当 X = 0 时,Y = 0。
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=xy=xy=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
图像如下:可先求导求出其极值点x=1/e,分析得x=1/e时函数y=x^x(x0,亦可根据极限定义出x=0时函数值为1)取得最小值。之后根据单调性可大致画出其图像。
图像如图所示:y=x的-2次方也就是y=1/x的2次方。这是一个幂函数。幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
y=x^x图像如下:解析过程如下:y=x^x的函数称为幂指函数。
图像如图所示:幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
图像如图所示:y=x的-2次方也就是y=1/x的2次方。这是一个幂函数。幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
幂函数的九个基本图像相关知识点如下:定义:幂函数(power function)是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=xy=xy=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
图像如下:可先求导求出其极值点x=1/e,分析得x=1/e时函数y=x^x(x0,亦可根据极限定义出x=0时函数值为1)取得最小值。之后根据单调性可大致画出其图像。
图像如图所示:y=x的-2次方也就是y=1/x的2次方。这是一个幂函数。幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
y=x^(2/3)图像如下:一般地,y=x^α(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
y=x^x图像如下:解析过程如下:y=x^x的函数称为幂指函数。
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=xy=xy=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
确定函数的定义域和值域:根据幂函数的形式确定其定义域和值域。幂函数的一般形式为 y = x^a,其中 a 是常数,x 为自变量。
y=x^(2/3)图像如下:一般地,y=x^α(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
图像如图所示:y=x的-2次方也就是y=1/x的2次方。这是一个幂函数。幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
.作法与图形:通过如下3个步骤 (1)列表[一般取两个点,根据两点确定一条直线];(2)描点;(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。